Fair Isn’t Always Equal

Assessment and Grading in the Differentiated Classroom

Rick Wormeli 2007-2008
For further conversation about any of these topics:

Rick Wormeli
rwormeli@cox.net
703-620-2447
Herndon, Virginia, USA
(Eastern Standard Time Zone)
Define Each Grade

A:

B:

C:

D:

E or F:
“A ‘D’ is a coward’s ‘F.’ The student failed, but you didn’t have enough guts to tell him.”

-- Doug Reeves
Once we cross over into D and F(E) zones, does it really matter? We’ll do the same two things: **Personally investigate** and **take corrective action**
Deoxyribonucleic Acid, or DNA, is the blueprint for who we are. Its structure was discovered by Watson and Crick in 1961. Watson was an American studying in Great Britain. Crick was British (He died last year). DNA is shaped like a twisting ladder. It is made of two nucleotide chains bonded to each other. The poles of the ladder are made of sugar and phosphate but the rungs of the ladder are made of four bases. They are thymine, guanine, and cytosine, and adenine. The amount of adenine is equal to the amount of thymine (A=T). It’s the same with cytosine and guanine (C=G).
The sequence of these bases makes us who we are. We now know how to rearrange the DNA sequences in human embryos to create whatever characteristics we want in new babies – like blue eyes, brown hair, and so on, or even how to remove hereditary diseases, but many people think it’s unethical (playing God) to do this, so we don’t do it. When DNA unzips to bond with other DNA when it reproduces, it sometimes misses the re-zipping order and this causes mutations. In humans, the DNA of one cell would equal 1.7 meters if you laid it out straight. If you laid out all the DNA in all the cells of one human, you could reach the moon 6,000 times!
Conclusions from Sample DNA Essay Grading

The fact that a range of grades occurs among teachers who grade the same product suggests that:

• Assessment can only be done against commonly accepted and clearly understood criteria.
• Grades are relative.
• Teachers have to be knowledgeable in their subject area in order to assess students properly.
• Grades are subjective and can vary from teacher to teacher.
• Grades are not always accurate indicators of mastery.
“The score a student receives on a test is more dependent on who scores the test and how they score it than it is on what the student knows and understands.”

-- Marzano, *Classroom Assessment & Grading That Work* (CAGTW), p. 30
Four Questions on DI:

1. What if we differentiated instruction for all students, kindergarten through 12th grade? What kind of person would we graduate from our schools?

2. What if we never differentiated instruction for all students, Kindergarten through 12th grade? What kind of person would we graduate from our schools?

3. Is the world beyond school differentiated?

4. Did our own teachers differentiate for us when we were students?
Differentiated instruction and standardized tests –

‘**NOT** an oxymoron!

The only way students will do well on tests is if they learn the material. DI maximizes what students learn. DI and standardized testing are mutually beneficial.
Definition

Differentiating instruction is doing what’s fair for students. It’s a collection of best practices strategically employed to maximize students’ learning at every turn, including giving them the tools to handle anything that is undifferentiated. It requires us to do different things for different students some, or a lot, of the time. It’s whatever works to advance the student if the regular classroom approach doesn’t meet students’ needs. It’s highly effective teaching.
What is fair…

…isn’t always equal.
What is Mastery?

“Tim was so learned, that he could name a horse in nine languages; so ignorant, that he bought a cow to ride on.”

Ben Franklin, 1750, *Poor Richard’s Almanac*
“Understanding involves the appropriate application of concepts and principles to questions or problems posed.”

-- Howard Gardner, 1991

“Real comprehension of a notion or a theory -- implies the reinvention of this theory by the student...True understanding manifests itself by spontaneous applications.” -- Jean Piaget
From the Center for Media Literacy in New Mexico –

“If we are literate in our subject, we can:

access (understand and find meaning in),
analyze,
evaluate,
and **create**
the subject or medium.”
Working Definition of Mastery
(Wormeli)

Students have mastered content when they demonstrate a thorough understanding as evidenced by doing something substantive with the content beyond merely echoing it. Anyone can repeat information; it’s the masterful student who can break content into its component pieces, explain it and alternative perspectives regarding it cogently to others, and use it purposefully in new situations.
Non-Mastery…

• The student can repeat the multiplication tables through the 12’s
…and Mastery

• The student can hear or read about a situation that requires repeated addition and identifies it as a multiplication opportunity, then uses multiplication accurately to shorten the solution process.
Non-mastery...

- A student prepares an agar culture for bacterial growth by following a specific procedure given to her by her teacher. She calls the experiment a failure when unknown factors or substances contaminate the culture after several weeks of observation.
...and Mastery

• A student accounts for potentially contaminating variables by taking extra steps to prevent anything from affecting an agar culture on bacterial growth she’s preparing, and if accidental contamination occurs, she adjusts the experiment’s protocols when she repeats the experiment so that the sources of the contamination are no longer a factor.
Non-mastery…

• The student uses primarily the bounce pass in the basketball game regardless of its potential effectiveness because that’s all he knows how to do.
...and Mastery

• The student uses a variety of basketball passes during a game, depending on the most advantageous strategy at that moment in the game.
Non-mastery…

• The students can match each of the following parts of speech to its definition accurately: noun, pronoun, verb, adverb, adjective, preposition, conjunction, gerund, and interjection.
...and Mastery

• The student can point to any word in the sentence and explain its role (impact) in the sentence, and explain how the word may change its role, depending on where it’s placed in the sentence.
Consider Gradations of Understanding and Performance from Introductory to Sophisticated

Introductory Level Understanding:

Student walks through the classroom door while wearing a heavy coat. Snow is piled on his shoulders, and he exclaims, “Brrrr!” From depiction, we can infer that it is cold outside.

Sophisticated level of understanding:

Ask students to analyze more abstract inferences about government propaganda made by Remarque in his wonderful book, *All Quiet on the Western Front.*
• Determine the surface area of a cube.
• Determine the surface area of a rectangular prism (a rectangular box)
• Determine the amount of wrapping paper needed for another rectangular box, keeping in mind the need to have regular places of overlapping paper so you can tape down the corners neatly
• Determine the amount of paint needed to paint an entire Chicago skyscraper, if one can of paint covers 46 square feet, and without painting the windows, doorways, or external air vents.

• Define vocabulary terms.
• Compare vocabulary terms.
• Use the vocabulary terms correctly.
• Use the vocabulary terms strategically to obtain a particular result.
• Identify characteristics of Ancient Sumer
• Explore the interwoven nature between religion and government in Sumer
• Explain the rise and fall of city-states in Mesopotamia
• Trace modern structures/ideas back to their roots in the birthplace of civilization, the Fertile Crescent.

• Identify parts of a cell.
• Explain systems within a cell and what functions they perform.
• Explain how a cell is part of a larger system of cells that form a tissue
• Demonstrate how a cell replicates itself.
• Identify what can go wrong in mitosis.
• List what we know about how cells determine what kind of cell they will become.
• Explain how knowledge of cells helps us understand other physiology.
1. Multiply fractions.
2. Multiply mixed numbers.
3. Multiply mixed numbers and whole numbers.
4. Critique the solutions of five students’ work as they multiply mixed numbers.
5. Multiply mixed numbers and decimals.
6. Divide fractions.
7. Divide mixed numbers.
8. Divide mixed numbers and whole numbers.
9. Given similar problems completed by anonymous students, identify any errors they’ve made and how you would re-teach them how to do the problems correctly.
What will you and your colleagues accept as evidence of full mastery and as evidence of almost mastery?

- Spelling test non-example
- No echoing or parroting
- Regular conversations with subject-like colleagues
- Other teachers grading your students’ work
- Pacing Guides and Common Assessments?
Avoid hunt-and-peck, call-on-just-a-sampling-of-students-to-indicate-the-whole-class’s-level-of-understanding assumptions:

“Does everyone understand?”
“Does anyone have any questions?”
“These two students have it right, so the rest of you must understand it as well.”

Get evidence from every individual!
Don’t take time to assess, unless you are going to take action with what you discover.
Consider:

• The Latin root of assessment is, “assidere,” which means, “to sit beside.”

• From Assessment expert, Doug Reeves:

 “Too often, educational tests, grades, and report cards are treated by teachers as autopsies when they should be viewed as physicals.”
Feedback vs Assessment

Feedback: Holding a mirror up to a student and showing him what he did, comparing it to what he was supposed to do; ‘NO evaluative component

Assessment: Gathering data in order to make a decision

Greatest Impact on Student Success: Formative feedback
What does our understanding of feedback mean for our use of homework?

Is homework more formative or summative in nature? Whichever it is, its role in determining grades will be dramatically different.
Be clear: We grade against standards, not routes students take or techniques teachers use to achieve those standards.

What does this mean we should do with class participation or discussion grades?
Assessment OF Learning

• Summative, final declaration of proficiency, literacy, mastery
• Grades used
• Little impact on learning from feedback
Assessment FOR Learning

• Grades rarely used, if ever
• Marks and feedback are used
• Share learning goals with students from the beginning
• Make adjustments in teaching a result of formative assessment data
• Provide descriptive feedback to students
• Provide opportunities for student for self- and peer assessment

-- O’Connor, p. 98
<table>
<thead>
<tr>
<th>Teacher Action</th>
<th>Result on Student Achievement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Just telling students # correct and incorrect</td>
<td>Negative influence on achievement</td>
</tr>
<tr>
<td>Clarifying the scoring criteria</td>
<td>Increase of 16 percentile points</td>
</tr>
<tr>
<td>Providing explanations as to why their responses are correct or incorrect</td>
<td>Increase of 20 percentile points</td>
</tr>
<tr>
<td>Asking students to continue responding to an assessment until they correctly answer the items</td>
<td>Increase of 20 percentile points</td>
</tr>
<tr>
<td>Graphically portraying student achievement</td>
<td>Increase of 26 percentile points</td>
</tr>
</tbody>
</table>

-- Marzano, CAGTW, pgs 5-6
<table>
<thead>
<tr>
<th>Item</th>
<th>Topic or Proficiency</th>
<th>Right</th>
<th>Wrong</th>
<th>Simple Mistake?</th>
<th>Really Don’t Understand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dividing fractions</td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>2</td>
<td>Dividing Fractions</td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>3</td>
<td>Multiplying Fractions</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Multiplying fractions</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Reducing to Smplst trms</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Reducing to Smplst trms</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Reciprocals</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Reciprocals</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Reciprocals</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>
The chart on the previous slide is based on an idea found in the article below:

“If we don’t count homework heavily, students won’t do it.”

Do you agree with this?
Does this sentiment cross a line?
Two Homework Extremes that Focus Our Thinking

• If a student does none of the homework assignments, yet earns an “A” (top grade) on every formal assessment we give, does he earn anything less than an “A” on his report card?

• If a student does all of the homework well yet bombs every formal assessment, isn’t that also a red flag that something is amiss, and we need to take corrective action?
Pre-Assessments

Used to indicate students’ readiness for content and skill development. Used to guide instructional decisions.
Formative Assessments

These are in-route checkpoints, frequently done. They provide ongoing and clear feedback to students and the teacher, informing instruction and reflecting subsets of the essential and enduring knowledge. They are where successful differentiating teachers spend most of their energy – assessing formatively and providing timely feedback to students and practice.
Sample Formative Assessments

Topic: Verb Conjugation

Sample Formative Assessments:

- Conjugate five regular verbs.
- Conjugate five irregular verbs.
- Conjugate a verb in Spanish, then do its parallel in English.
- Answer: Why do we conjugate verbs?
- Answer: What advice would you give a student learning to conjugate verbs?
- Examine the following 10 verb conjugations and identify which ones are done incorrectly.
Sample Formative Assessments

Topic: Balancing Chemical Equations

Formative Assessments:

- Define reactants and products, and identify them in the equations provided.
- Critique how Jason calculated the number of moles of each reactant.
- Balance these sample, unbalanced equations.
- **Answer:** What do we mean by balancing equations?
- Explain to your lab partner how knowledge of stoichiometric coefficients help us balance equations.
- Prepare a mini-poster that explains the differences among combination, decomposition, and displacement reactions.
Samples of Formative Assessment

• Solve these four math problems.
• What three factors led to the government’s decision to…
• Draw a symbol that best portrays this book’s character as you now understand him (her), and write a brief explanation as to why you chose the symbol you did.
• Record your answer to this question on your dry-erase board and hold it above your head for me to see.
• Prepare a rough draft of the letter you’re going to write.
• What is your definition of…?
• Who had a more pivotal role in this historical situation, ________________ or ________________, and why do you believe as you do?
Samples of Formative Assessment

• Identify at least five steps you need to take in order to solve math problems like these.
• How would you help a friend keep the differences between amphibians and reptiles clear in his mind?
• Write a paragraph of 3 to 5 lines that uses a demonstrative pronoun in each sentence and circle each example.
• Play the F sharp scale.
• In a quick paragraph, describe the impact of the Lusitania’s sinking
• Create a web or outline that captures what we’ve learned today about….
Additional Formative Assessment Ideas:

• “Reader’s Theater” -- Turn text, video, lecture, field trip, etc. into script and perform it

• Virtual Metaphors (Graphic Organizers)

• Projects, dioramas, non-linguistic representations

• Multiple Choice questions followed by, “Why did you answer the way you did?”

• Correct false items on True-false tests.
Summative Assessments

These are given to students at the end of the learning to document growth and mastery. They match the learning objectives and experiences, and they are negotiable if the product is not the literal standard. They reflect most, if not all, of the essential and enduring knowledge. They are not very helpful forms of feedback.
Tips for Planning Assessments

• Correlate all formal assessments with objectives.
• While summative assessments may be large and complex, pre-assessments usually are not.
• Get ideas for pre- and formative assessments from summative assessments.
• Spend the majority of your time designing/emphasizing formative assessments and the feedback they provide.
Tips for Planning Assessments –
Planning Sequence

- Design summative assessments first, then design your pre- and formative assessments.
- Give pre-assessments several days or a week PRIOR to starting the unit.
- Design your lesson plans AFTER reviewing pre-assessment data.
Lesson Designs:
Suggested Planning Sequence

1. Identify your essential and enduring knowledge
2. Identify your students with unique needs, and what they will need in order to achieve: change content, process, or product?
3. Identify formative and summative assessments – useful feedback
Lesson Designs

[Continued]

4. Design the learning experiences

5. Run a mental tape of each step in the lesson sequence -- Check lesson(s) against criteria for successful differentiated instruction – Revise as necessary.
Lesson Designs
[Continued]

6. Review plan with colleague.
7. Obtain/Create materials needed.
8. Conduct the lesson.
9. Evaluate and Revise plans for tomorrow’s lesson.
Evaluating the Usefulness of Assessments

• What are your essential and enduring skills and content you’re trying to assess?
• How does this assessment allow students to demonstrate their mastery?
• Is every component of that objective accounted for in the assessment?
• Can students respond another way and still satisfy the requirements of the assessment task? Would this alternative way reveal a student’s mastery more truthfully?
• Is this assessment more a test of process or content? Is that what you’re after?
Clear and Consistent Evidence

We want an accurate portrayal of a student’s mastery, not something clouded by a useless format or distorted by only one opportunity to reveal understanding.

Differentiating teachers require accurate assessments in order to differentiate successfully.
Great differentiated assessment is never kept in the dark.

“Students can hit any target they can see and which stands still for them.”

-- Rick Stiggins, Educator and Assessment expert

If a child ever asks, “Will this be on the test?”.....we haven’t done our job.
Successful Assessment is Authentic in Two Ways

• The assessment is close to how students will apply their learning in real-world applications. *(not mandatory, but nice if it happens)*

• The assessment must be authentic to how students are learning. *(mandatory)*
Successful Assessments are Varied and They are Done Over Time

• Assessments are often snapshot-in-time, inferences of mastery, not absolute declarations of exact mastery

• When we assess students through more than one format, we see different sides to their understanding. Some students’ mindmaps of their analyses of Renaissance art rivals the most cogent, written versions of their classmates.
Potential distractions on assessment day:

growling stomach, thirst, exhaustion, illness, emotional angst over:
parents/friends/identity/tests/college/politics/birthday/sex/blogs/parties/sports/projects/
homeework/self-esteem/acne/holiday/report cards/future career/money/disease

It’s reasonable to allow students every opportunity to show their best side, not just one opportunity.
Portfolios

Portfolios can be as simple as a folder of collected works for one year or as complex as multi-year, selected and analyzed works from different areas of a student’s life. Portfolios are often showcases in which students and teachers include representative samples of students’ achievement regarding standards and learning objectives over time. They can be on hardcopy or electronic, and they can contain non-paper artifacts as well. They can be places to store records, attributes, and accomplishments of a student, as well as a place to reveal areas in need of growth. They can be maintained by students, teachers, or a combination of both. Though they are stored most days in the classroom, portfolios are sent home for parent review at least once a grading period.
“Metarubric Summary”

To determine the quality of a rubric, examine the:

• **Content** -- Does it assess the important material and leave out the unimportant material?
• **Clarity** -- Can the student understand what’s being asked of him, is everything clearly defined, including examples and non-examples?
• **Practicality** -- Is it easy to use by both teachers and students?
• **Technical quality/fairness** -- Is it reliable and valid?
• **Sampling** -- How well does the task represent the breadth and depth of the target being assessed?

(p. 220). Rick Stiggins and his co-authors of Classroom Assessment for Student Learning (2005)
Rubric for the Historical Fiction Book Project – Holistic-style

5.0 Standard of Excellence:

- All material relating to the novel was accurate
- Demonstrated full understanding of the story and its characters
- Demonstrated attention to quality and craftsmanship in the product
- Product is a realistic portrayal of media used (examples: postcards look like postcards, calendar looks like a real calendar, placemats can function as real placemats)
- Writing is free of errors in punctuation, spelling, capitalization, and grammar
- Had all components listed for the project as described in the task

4.5, 4.0, 3.5, 3.0, 2.5, 2.0, 1.5, 1.0, .5, and 0 are awarded in cases in which students’ projects do not fully achieve all criteria described for excellence. Circled items are areas for improvement.

Keep the important ideas in sight and in mind.
Two Rubric Ideas to Consider:

• Only give the fully written description for the standard of excellence. This way students won’t set their sights on something lower.

• 4.0 rubrics carry so much automatic, emotional baggage, parents and students rarely read and internalize the descriptors. Make it easier for them: Use anything except the 4.0 rubric – 2.0, 3.0, 5.0, 6.0.
Why Do We Grade?

- Provide feedback
- Document progress
- Guide instructional decisions

- Motivate
- Punish
- Sort students

What about incorporating attendance, effort, and behavior in the final grade?
Consider...

- Teaching and learning can and do occur without grades.
- We do not give students grades in order to teach them.
- Grades reference summative experiences only – cumulative tests, projects, demonstrations, NOT formative experiences.
- Students can learn without grades, but they must have feedback.
- Grades are inferences based upon a sampling of student’s work in one snapshot moment in time. As such they are highly subjective and relative.
A grade represents a valid and undiluted indicator of what a student knows and is able to do – mastery.

With grades we document progress in students and our teaching, we provide feedback to students and their parents, and we make instructional decisions.
10 Practices to **Avoid** in a Differentiated Classroom

They Dilute a Grade’s Validity and Effectiveness

- Penalizing students’ multiple attempts at mastery
- Grading practice (daily homework) as students come to know concepts [Feedback, not grading, is needed]
- Withholding assistance (not scaffolding or differentiating) in the learning when it’s needed
- Group grades
- Incorporating non-academic factors (behavior, attendance, and effort)
• Assessing students in ways that do not accurately indicate students’ mastery (student responses are hindered by the assessment format)
• Grading on a curve
• Allowing Extra Credit
• Defining supposedly criterion-based grades in terms of norm-referenced descriptions ("above average," “average”, etc.)
• Recording zeroes on the 100.0 scale for work not done
0 or 50 (or 60)? = F or an F?

100-pt. Scale:
0, 100, 100, 100, 100, 100 -- 83% (C+)
60, 100, 100, 100, 100, 100 -- 93% (B+)

When working with students, do we choose the most hurtful, unrecoverable end of the “F” range, or the most constructive, recoverable end of the “F” range?
Be clear: Students are not getting points for having done nothing. The student still gets an F. We’re simply equalizing the influence of the each grade in the overall grade and responding in a way that leads to learning.
Imagine the Reverse…

A = 100 – 40
B = 39 – 30
C = 29 – 20
D = 19 – 10
F = 9 – 0

What if we reversed the proportional influences of the grades? That “A” would have a huge, yet undue, inflationary effect on the overall grade. Just as we wouldn’t want an “A” to have an inaccurate effect, we don’t want an “F” grade to have such an undue, deflationary, and inaccurate effect. Keeping zeroes on a 100-pt. scale is just as absurd as the scale seen here.
A (0) on a 100-pt. scale is a (-6) on a 4-pt. scale. If a student does no work, he should get nothing, not something worse than nothing. How instructive is it to tell a student that he earned six times less than absolute failure? Choose to be instructive, not punitive.

[Based on an idea by Doug Reeves, The Learning Leader, ASCD, 2006]
Temperature Readings for Norfolk, VA:
85, 87, 88, 84, 0 ← (‘Forgot to take the reading)
Average: 68.8 degrees

This is inaccurate for what really happened, and therefore, unusable.
Clarification:

When we’re talking about converting zeroes to 50’s or higher, we’re referring to zeroes earned on major projects and assessments, *not* homework, as well as anything graded on a 100-point scale. It’s okay to give zeroes on homework or on small scales, such as a 4.0 scale. Zeroes recorded for homework assignments do not refer to final, accurate declarations of mastery, and those zeroes don’t have the undue influence on small grading scales.
“We are faced with the irony that a policy that may be grounded in the belief of holding students accountable (giving zeroes) actually allows some students to escape accountability for learning.” -- O’Connor, p. 86
Grading Late Work

• One whole letter grade down for each day late is punitive. It does not teach students, and it removes hope.

• A few points off for each day late is instructive; there’s hope.

• Yes, the world beyond school *is* like this.
Helpful Consideration for Dealing with Student’s Late Work:

Is it _chronic_….

…or is it _occasional_?

We respond differently, depending on which one it is.
Are we interested more in holding students accountable or making sure they learn?

Avoid, “learn or I will hurt you” measures.
(Nancy Doda)
This quarter, you’ve taught:

- 4-quadrant graphing
- Slope and Y-intercept
- Multiplying binomials
- Ratios/Proportions
- 3-dimensional solids
- Area and Circumference of a circle.

The student’s grade: B

What does this mark tell us about the student’s proficiency with each of the topics you’ve taught?
Gradebooks in a Differentiated Classroom

• Avoid setting up gradebooks according to formats or media used to demonstrate mastery: *tests, quizzes, homework, projects, writings, performances*

• Instead, set up gradebooks according to mastery: *objectives, benchmarks, standards, learner outcomes*
Set up your gradebook into two sections:

<table>
<thead>
<tr>
<th>Formative</th>
<th>Summative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments and assessments completed on the way to mastery or proficiency</td>
<td>Final declaration of mastery or proficiency</td>
</tr>
</tbody>
</table>
Unidimensionality – A single score on a test represents a single dimension or trait that has been assessed

Problem: Most tests use a single score to assess multiple dimensions and traits. The resulting score is often invalid and useless. -- Marzano, CAGTW, page 13

<table>
<thead>
<tr>
<th>Student</th>
<th>Dimension A</th>
<th>Dimension B</th>
<th>Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>
100 point scale or 4.0 Scale?

• A 4.0 scale has a high inter-rater reliability. Students’ work is connected to a detailed descriptor and growth and achievement rally around listed benchmarks.

• In 100-point or larger scales, the grades are more subjective. In classes in which teachers use percentages or points, students, teachers, and parents more often rally around grade point averages, not learning.
Consider:

- Pure mathematical averages of grades for a grading period are inaccurate indicators of students’ true mastery.
- A teacher’s professional judgment via clear descriptors on a rubric actually increases the accuracy of a student’s final grade as an indicator of what he learned.
- A teacher’s judgment via rubrics has a stronger correlation with outside standardized tests than point or average calculations do.

(Marzano)
Office of Educational Research and Improvement Study (1994):

Students in impoverished communities that receive high grades in English earn the same scores as C and D students in affluent communities.

Math was the same: High grades in impoverished schools equaled only the D students’ performance in affluent schools.
Avoid using the Mean: Accurate grades are based on the most consistent evidence. We look at the pattern of achievement, including trends, not the average of the data. This means we focus on the median and mode, not mean, and the most recent scores are weighed heavier than earlier scores.

Median: The middle test score of a distribution, above and below which lie an equal number of test scores

Mode: The score occurring most frequently in a series of observations or test data
“The main problem with averaging students’ scores...is that averaging assumes that no learning has occurred from assessment to assessment...that differences in observed scores...are simply a consequence of ‘random error,’ and the act of averaging will ‘cancel out’ the random error...”

-- Marzano, CAGTW, p. 96
Allowing Students to Re-do Assignments and Tests for Full Credit:

• Always, “…at teacher discretion.”

• It must be within reason.

• Students must have been giving a sincere effort.

• Require parents to sign the original assignment or test, requesting the re-do.

• Require students to submit a plan of study that will enable them to improve their performance the second time around.
Allow Students to Re-do Assignments and Tests for Full Credit:

- Identify a day by which time this will be accomplished or the grade is permanent.

- With the student, create a calendar of completion that will help them achieve it.

- Require students to submit original with the re-done version so you can keep track of their development.

- Reserve the right to give alternative versions.

- No-re-do’s the last week of the grading period.

- Sometimes the greater gift is to deny the option.
Inclusion – Clarifying Philosophies

Before partnering and frequently throughout the partnering, clarify:

-- Each person’s role
-- Acceptable grading policies

Administrative direction on these are critical.
Inclusion – Focus

• All students in the inclusion/regular class are considered to be the regular education teacher’s students.

• **Focus of Regular Education teacher**: the mandated curriculum and each student’s progress toward mastering it. ‘Has expertise in the subject and the teaching of it.

• **Focus of the Special Education teacher**: how to teach students with identified needs, as well as students’ individualized education plans. ‘Informs the regular education teacher of those goals and works with the regular education teacher to make accommodations necessary for identified students to achieve the regular education standards/objectives. ‘May or may not have expertise in the class’s curriculum.
Grading Inclusion Students

Question #1:

“Are the standards set for the whole class also developmentally appropriate for this student?”

• If they *are* appropriate, proceed to Question #2.
• If they are *not* appropriate, identify which standards are appropriate, making sure they are as close as possible to the original standards. Then go to question #2.
Grading Inclusion Students

Question #2:

“Will these learning experiences (processes) we’re using with the general class work with the inclusion student as well?”

• If they **will** work, then proceed to Question #3.
• If they will **not** work, identify alternative pathways to learning that will work. Then go to Question #3.
Grading Inclusion Students

Question #3:
“Will this assessment instrument we’re using to get an accurate rendering of what general education students know and are able to do regarding the standard also provide an accurate rendering of what this inclusion student knows and is able to do regarding the same standard?

• If the instrument will provide an accurate rendering of the inclusion student’s mastery, then use it just as you do with the rest of the class.
• If it will not provide an accurate rendering of the inclusion student’s mastery, then identify a product that will provide that accuracy, and make sure it holds the student accountable for the same universal factors as your are asking of the other students.
Grading Gifted Students

• Insure grade-level material is learned.
• If it’s enrichment material only, the grade still represents mastery of on-grade-level material. An addendum report card or the comment section provides feedback on advanced material.
• If the course name indicates advanced material (Algebra I Honors, Biology II), then we grade against those advanced standards.
• If the student has accelerated a grade level or more, he is graded against the same standards as his older classmates.
Your Own Grading Philosophy Statement

Write a one- to two-page document that describes your grading policies. Write it as if parents, administrators, colleagues, and the School Board would be reading it with a critical eye. Share this document with others.

Your pedagogy becomes real and has impact only after it has been defended and criticized publicly. Otherwise, it’s just an opinion or assumption. Our teaching core values are revealed and potentially transformed in the negotiation of these points with others, not in the recording of our thoughts individually.
GPS Format

1. 1-2 sentence statement of your philosophy. Ex: “Homework will count 10% in this class.”

2. 1-5 sentences of rationale as to why this is your policy. Ex: “Homework is meant to be practice as students learn a topic, not a declaration of summative mastery of that topic. Since grades are reserved only for summative declarations of mastery, homework should not be a major portion of the final grade for the grading period.”
Include in your statement your philosophy on the following:

Differentiated and fair grading
Rubrics
Modified or adjusted curriculum
Student self-assessment
Extra credit
What grades mean
Definitions of individual grades
Grading scales (100 vs 4.0)
Formative vs summative assessments
Averaging grades vs using median/mode
Grading classwork
Grading homework
The purpose of homework
How much curriculum should be on one test and tiering tests

The role of alternative assessments
Weighting grades
The percent influence of varied assessments
Dealing with late work
Setting up the gradebook according to categories, assessment formats or standards
Re-doing work or tests for full credit
The purpose of grades and grading
Recommended Reading on Assessment and Grading

- **Benjamin, Amy.** *Differentiating Instruction: A Guide for Middle and High School Teachers*, Eye on Education, 2002
- **Borich, Gary D.; Tombari, Martin L.** *Educational Assessment for the Elementary and Middle School Classroom (2nd Edition)*, Prentice Hall, 2003
Recommended Reading on Assessment and Grading

- www.exemplars.com
- Marzano, Robert. *Classroom Assessment and Grading that Work*, ASCD 2006
Recommended Reading

• O’Connor, Ken; *How to Grade for Learning, 2nd Edition*, Thousand Oaks, CA, Corwin Press

• O’Connor, Ken; *A Repair Kit for Grading: 15 Fixes for Broken Grades*, ETS publishers, 2007

• Popham, W. James; *Test Better, Teach Better: The Instructional Role of Assessment*, Association for Supervision and Curriculum Development, 2003

• Rutherford, Paula. *Instruction for All Students*, Just ASK Publications, Inc (703) 535-5432, 1998

• Stiggins, Richard J. *Student-Involved Classroom Assessment (3rd Edition)*, Prentice Hall, 2000
Grant Wiggins Web site and organization: Center on Learning, Assessment, and School Structure (CLASS)
info@classnj.org www.classnj.org gpw@classnj.org

“Even the man on the right track will get run over if he just stands there.”

-- Will Rogers

“Don’t let anything hit you in the rear end.” 😊

-- Rick Wormeli